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ABSTRACT 

In this paper we shall consider problems of the following type. Suppose 
G is some set, ~ is some family of subsests of G (e.g. G could be the Euclidean 
plane and ~ might be the family of all sets of Lebesgue measure zero), and 

is any directed graph over G (i.e. any collection of ordered pairs of members 
of 63 such that for each g ~ G the set {h: <g, h> ~ ~} belongs to the family 
~.  How large a set S~_G must there exist with the property that (S • 
~ = ~ ,  i.e. such that it is totally disconnected.'? In many of the cases 
we shall consider (including the particular example above), the answerwill 
turn out to be independent of the axioms of set theory and will remain so 
even after adjoining the negation of the continuum hypothesis. 

1. Introduction 

In this paper we shall consider problems of the following type. Suppose G is 

some set, ~ is some family of subsets of  G (e.g. G could be the Euclidean plane 

and 1~ might be the family of all sets of Lebesgue measure zero), and ff is any 

directed graph over G (i.e. any collection of ordered pairs of  members of  G) such 

that for each g E G the set {h: <g, h)  ~ if} belongs to the family ~ .  How large a 

set S ~ G must there exist with the property that (S • S) n ff = ~ ,  i.e. such that 

it is totally disconnected? In many of the cases we shall consider (including the 

particular example above), the answer will turn out to be independent of the 

axioms of set theory and will remain so even after adjoining the negation of the 

continuum hypothesis. 

In our proofs we shall not need to construct models of  set theory and, in 

particular, we shall not make any explicit use of forcing techniques. Rather, we 

shall assume the axioms of Zermelo-Fraenkel set theory with choice (ZFC) and, 
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whenever necessary, cite known theorems concerning the existence of certain 

models of ZFC. Even here we shall normally be interested only in simple combina- 

torial properties of these models such as whether or not the continuum hypothesis 

holds or whether every set of reals of cardinality less than 2 % has measure zero. 

We will then use these properties to prove theorems about graphs, and thus 

their consistency will imply the consistency of the theorems in question. 

We shall need some notation. For  any set A and any cardinal ~:, we denote the 

cardinality of A by I A[; the cofinality of x by if(x); the smallest cardinal larger 

than tc by to+ ; the sets {B ~ A: 181 < _ A: IB 1 __< K}, and (B ~ A: IBI = ~c} 

by [A] <~, [A] ---<~, and [A] ~ respectively; the set {(a,b): (b ,a )cA}  by A - t ;  the 

set {(a, b) c A  • A: a ~ b} by -~; and the cardinality of the power set of  A by 2 a. 

We shall identify cardinals with initial ordinals, i.e. a cardinal tc will be the set 

of all ordinals of  cardinality less than K. The cofinality of a cardinal tc may then 

be thought of as the smallest cardinal 2. such that there exist cardinals ~:0, 

xl ,- . - ,  ~:~,--- c~ < 2, each of cardinality less than x but nevertheless satisfying 

~,<~r = u. It is well known that for any ordinal cr we have cf(N~+ 1) = N~+ t and 

that for any limit ordinal 2 we have cJ(btz) = cJ(2). 

We shall use the symbols N, Z, and R to denote respectively the set of natural 

numbers, the set of all integers, and the set of all real numbers, and we shall 

denote a topological space over a set T with open sets (9 by J -o r  (T ,  (9). 

We define a directed graph over a set G to be any pair (G, f f )  such that c5 ~ (~, 

and for each point g E G we denote the set {h: (g,  h )Ef t}  by g~ or, if ff is clear 

from the context, by g. A directed graph (G, ~ )  will be called totally disconnected 
or free iff f~ = ~ and totally connected iff ff u f f -a  = (~. For  any set H ___ G we 

define (H,~r to be a subgraph of (G, c5) iff3V = ~ N if, and we shall frequently 

identify H and ( H , / ~  c~ i f )  when we are interested in both set properties of the 

one and graph properties of the other. Thus if we are dealing with a graph over R, 

we may speak of a set H _~ R as being totally disconnected and of the second 

category. In this vein, if (G,  f f )  is a directed graph, then we define a set H ~ G to 

be ~-free (or just free if c5 is clear from the context) iff H t~ ff = ~ .  We define two 

disjoint sets A , B ~  G to be ~-disjoint iff (A • B ) ~ ( f f u f f - ~ ) = , Q ~ ,  and we 

define a family ~ of subsets of G to be fr (or again just free) iff its members 

are pairwise if-disjoint. Finally, if b[ is a family of subsets of G and (G, f f )  is a 

directed graph such that for each g E G we have g e ~ ,  then we define (G, ff) to 

be an H-graph. 
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2. Combinatorial problems 

The first problem of the kind we shall consider was posed by Paul Turfin in a 

private communication in 1935 in which he asked, using somewhat different 

notation, if every [R]<~~ admits an infinite free subgraph. This was 

answered affirmatively by Grfinwald. Lfizfir showed that such a graph always 

admits a free subgraph of cardinality 2 ~~ Ruziewicz [12] then conjectured: 

THEOREM 2.1. Let S be an infinite set of cardinaIity ~, and let 2 be any 

cardinal less than K. Then every [S]<&graph over S admits a totally-discon- 

nected subgraph of cardinality x. [] 

Special cases of this were proven by Sierpifiski, Lfizfir, S. Picard, Fodor, and 

Erd6s. Finally Hajnal [6] presented a proof of the theorem as stated. 

In a sense this theorem is "best possible" as can be seen by the following which 

is found in [2]. 

THEOREM 2.2. For every set S there exists a totally connected [S]<[Sl-graph 

( S , ~ ) .  

PROOF. Choose any well-ordering -< of S such that (S, ~ )  is order-isomorphic 

to (l S [,e ) and let N = {(s, t ) :  t -< s)}. []  

However, by introducing a notion which may be thought of as analogous to 

boundedness, we can obtain an intermediate result. 

THEOREM 2.3. Let S be any infinite set, let ~ be any cardinal less than 

IS[, let N = {S~: eeoc} be any partition of S into ~: disjoint subsets each of 

cardinality J S l, and let U = { r  ~ IS] <lsl: q ct ~ tc ( r  _~ Up<,S~)}. Then: 

a. There exists an ~[-graph (S, fY) which admits no infinite free subgraphs 

and no pairs U, V of ~-disjoint subsets both of cardinality ] St; 

b I f  cf(Isl), then there exists a totally connected 1.I-graph (S,:g('); 

c. I f  cf(x) ~ cf( I SI), then every ~-graph admits arbitrarily large finite free 

subgraphs. 

PROOF. We first note that since we are only interested in bounded subsets of ~ ,  

we may assume without loss of generality that x is regular. For the remainder of 

this proof we set v = l S l, and we assume that we have indexed each S, with v so 
~t. 

we have S, = {s,. fl ~ v}. We now continue with each section separately. 
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a. Define N to be the set {(sff, s ~ ) e S : y <  e, 6 < fl}. Suppose now that 

{s~',: i e co} is an infinite free set of distinct elements. From the definition of N we 

see immediately that i r j ~ 0q r e j, so we may assume without loss of generality 

that i < j ~ 0q < ej. But it also follows easily that e~ < ej ~/~i >/~j, so {/~: i e co} 

must be an infinite decreasing sequence of ordinals which is impossible. 

Now let Uand V be twonon-empty  N-disjoint subsets of S. Let e be the least 

ordinal such that (U u V) c3 S~ r ~ .  We assume, by symmetry, that U c3 S~ r ~ ,  

and we let fl be the least ordinal such that s~ e U. Then by N-disjointness we have 

V ~ {s~: 6 </~}. But this latter set has cardinality Ix x/~1 which is strictly less 

than I s l  �9 

b. Let {v~: 0t < x} be a strictly increasing cofinal subset of v, and for each 0~ < x 

let T,  = {s~: fl < 0cA ~, < v,}. Also, let -< be any well ordering of S satisfying 

t E (T B - T~) A s e T~ ~ s -< t. We note that since each T~ has cardinality less than 

v, we have S order isomorphic under -< to v, and thus the set of predecessors 

under -~ of any given element has cardinality less than v. Since it also follows 

that T~ ~_ ~3 {S#: fl < ~t}, we see that the graph ( S , { ( s , t ) :  t M s } )  is a totally- 

connected lI-graph on S. 

c. Our proof  will essentially parallel the proof  of Theorem 2 of Erd6s and 

Hajnal [-4, p. 188] except that we will have to allow for the possible singularity of v. 

Thus let 2 = cf(v) and let ( S , N )  be any ~-graph over S. We shall prove by 

induction that for each natural number n and each ordinal ct < x there exists an 

n-element totally-disconnected subset T~ of S such that T~ c3 S, r ~ ,  but T~ c3 

u#<,S# = ~ .  This is trivially true for n = 1, so we suppose it is true for n = m 

and prove it for n = m + 1. Choose any ordinal 0~. By our induction hypothesis we 

may choose a family 6: = {T~: ~ < fl < x} such that each T~ is as described 

above. For  each T e 5: let T = u {t: t E T}. Because each T ~ 6: is finite, we have 

ITl<v. 
Now suppose [ U{ T: T ~S:}[ = v. Since 6 e has cardinality x, this implies that 

2 = cf(v) < x and since cf(v) cannot equal x by the hypothesis of part c (this is 

the only place we use this hypothesis), we have 2 < x. Let v* = {v#: fl < 2} be 

any strictly increasing cofinal set of cardinals in v, and for each fl ~2 let 

cp = { ~ x :  I < vp}. Because x = u#<xC#, 2 < x ,  and x is regular, there must 

be some 6 < x such that [C~[ = x. Call this set x*. 

On the other hand, if [ u { T: T r 60}] is strictly less than v, set x* = x. In 
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either case we set ~ * =  {T~: e < f lex*} and we note that x*, because it has 

cardinality x, is still cofinal with x. However, we may now assume that 

u {  T: T e 5  ~*} has cardinality strictly less than v. Thus we may choose a point 

s e ( S , -  U{T:  T e6e*}). But s is bounded; i.e. there exists a f l e x  such that 

s ~ Ur<aS r. Thus we may choose any ordinal ~ e x* - fl and set T~+~ = {s} UT~. 

In particular i f R  Bc is the family of bounded members of JR] <IRI, we have: 

COROLLARY. 2.4. Every RBC-graph over R admits arbitrarily large finite free 

subsets, and there exists such a graph which does not admit any infinite free 

subsets. 

PROOF. In 2.3 let x = co and for each n ~co let S, = ( - n - 1, - n] u [n ,n+  1). 

Since ]R[ can never have cofinality co, the result follows. �9 

Finally, we shall need a generalization of the Ruziewicz conjecture. 

THEOREM 2.5. Let S be any infinite set, let ~ be any subfamily of [S] Isl 

of cardinality less than Is[, and let ~r be any cardinal less than [ S I. Then every 

[ S ] < ' - g r a p h a d m i t s a f r e e s e t r ~ _ S s a t i s f y i n g P E ~ l F r 3 n l = t S [ .  �9 

This was first stated by Erd6s and Fodor  [3] under the additional assumption 

that N be a disjoint family, and proven for I sl regular. Hajnal [6] notes 

that his proof  of 2.1 also applies to the case [ S I singular of the Erd6s-Fodor 

theorem, and it is easily seen that both proofs can be modified to cover the case 

not disjoint. 

3. Topological problems 

We begin with some observations which follow immediately from our previous 

section and various known results concerning some of the models of ZFC which 

have been recently constructed. Although many of the results in this section will 

be stated with respect to R, they nevertheless can be generalized to Euclidean 

n-space for all n >= 1. For  the remainder of this paper let Hn be the family of 

nowhere-dense subsets of R, let H F be the family of subsets of R which are of the 

first category, and let 1~ u be the family of subsets of R which have Lebesgue 

measure zero. 

As R M and R r are easier to handle, we treat them first. Let R u v c -  - R u r~ R r 

r3 JR] <R. We first note: 
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THEOREM 3.1. I f  the continuum hypothesis holds, then there exist totally- 

connected ~MrC-graphs over R. 

PROOF. The result follows immediately from 2.2 and the fact that every 

countable subset of R is of the first category and has measure zero. �9 

However, the negation of the continuum hypothesis does not yield any in- 

formation at all. The reason for this is that the proof of 3.1 does not really use 

the full continuum hypothesis but rather the following weaker hypothesis which 

we shall refer to as C. 

Every subset of R of cardinality less than 2 e~ is of the first category and has 

measure zero. 

It is known that C is a consequence of an axiom due to Martin [10] which is 

itself known [14] to be consistent with the negation of the continuum hypothesis. 

Thus we have: 

THEOREM 3.2. It is consistent with the negation of the continuum hypothesis 

that there exist totally-connected liMFC-graphs over R. �9 

In other models of ZFC the situation is strikingly different, and we may even 

pick up some information about 1I N. 

THEOREM 3.3. It is consistent with the axioms of set theory (ZFC) that every 

~r-graph (and therefore every llN-graph) over R admits a free subgraph which 

is of the second category and has cardinality 2 ~~ and that there nevertheless 

exists a totally connected llM-graph over R. 

PROOF. Suppose that to a countable standard model of ZFC we add a set G 

of at least N2 generic (i.e., we use conditions of the type first introduced by Co- 

hen [1, chap. iv]) real numbers. Then it is well known [15] that in the new 

model, G has the property that for every set A e 1I r the set A (3 G is countable. 

(This follows from the fact that every member of lI  N is contained in a closed 

member of),I N and that, in models of this type, every closed set of reals is con- 

structible from a countable subset C of G. It can then be shown that no member of 

G - C can possibly be forced to be a member of a nowhere dense set constructible 

from C.) Now suppose that (R, ~ )  is any If&graph. Because of the special pro- 

perty of G, the graph (G,G n ~ )  is a [G] <~'-graph and since G has cardinality 

2~~ N1 > No, there must, by 2.1, exist a free subset H of cardinality 2 ~~ 
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It is clear that H is also a N-free subset, of R and because it is an uncountable 

subset of G, it must be of the second category. 

Furthermore, Solovay has proven (private communication) that, in the above 

construction, each Borel set of measure zero which is in the model one begins 

with, can be extended to a Borel set of measure zero in the new model in such a 

way as to insure that every member of R is contained in at least one of these 

extensions. Now assume that the original model satisfied the continuum 

hypothesis. Then in the new model, R is contained in a union of Nt sets each of 

measure zero and therefore can be partitioned into a family ~- = {M~: c~ ~ N1} of 

disjoint members of 1I M. Thus the graph ( R , { ( r , s ) ~ k : r ~ M ~  A seMt~ 

~ f l  < c~}) is a totally connected 1[M-graph. []  

On the other hand we also have: 

THEOREM 3.4. It is consistent with the axioms of set theory that every 11M. 

graph over R admits a free set of cardinality 2 ~~ which is not of measure zero, 

and that there nevertheless exists a totally-connected 1iF-graph. 

PROOF. Solovay has proven (private communication) that if one adds random 

reals [13-] rather than generic reals to a countable standard model of ZFC, one 

obtains results analogous to those mentioned in the proof  of 3.3 except that 

"measure zero"  and "first category" must be interchanged. Thus if a set H of 

more than N 1 random reals is added to a countable standard model of ZFC + 2 ~~ 

= N1, then H in the resulting model will be a subset of R such that for every set 

A d I  M, the set A c3 H will be countable. Furthermore, it will be possible to 

partition R into a union of N 1 disjoint sets each of the first category. The proof  

then proceeds as in 3.3. [ ]  

Now denote the bounded members of 1I N, 1i F, lI M, and 11FMC by 11~N, 11By, 

11[ BM, and 11BrMC respectively. Erd6s and Hajnal [4] have proven that if 11 is the 

family of bounded subsets of R of outer measure no greater than one, then every 

11-graph admits arbitrarily large finite free subgraphs. These authors have asked 

about infinite free subgraphs [4, and 5, 4+38C]. We note that it is consistent 

with the axioms of set theory that such infinite free subgraphs do not exist. 

THEOREM 3.5. Every 11BF--or )2iBg-graph over R admits arbitrarily large 

finite free subgraphs. However, C (and therefore the continuum hypothesis) 

implies that there exists a 11BrMC-graph (R ,N)  which admits no infinite free 
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subgraphs and such that there do not exist two ~-disjoint subsets of R of 

cardinality 2 ~~ 

PROOF. The existence of arbitrarily large finite free isubgraphs follows im- 

mediately from the proof of Erd~s and Hajnal's theorem (or the proof of 2.3), 

while the existence of the graph (R, ff) follows directly from 2.3 by setting 

x = No and letting ~ = {( - n - 1, - n] W In, n + 1): n ~ co}. �9 

We do not know if the negation of the continuum hypothesis yields any positive 

information about RN-graphs. Erd/~s [2] has proven that every ~N-graph admits 

an infinite free subset. M~t6 [11] has proven that every such graph admits free 

subsets of every countable well-order type, (under <). We shall prove (4.11) that 

every such graph admits free subsets of every countable order type, but, under 

the assumption of the negation of the continuum hypothesis, the closest we can 

come to proving these results "best possible" is: 

THEOREM 3.6. It is consistent with the negation of the continuum hypothesis 

that there exists an RNC-graph over R which admits no free subgraphs of cardinal- 

ity #rearer than N1. 

PROOF. In the models of ZFC constructed by Solovay which we have referred 

to, and in certain models constructed by the present author [8], the continuum 

can be made arbitrarily large, but R can always be partitioned into a family 

~" = (N~: ~ E N1} of disjoint, nowhere-dense subsets. Let -~ be any well ordering 

(in such a model) such that (R , -<)  has the order type of the cardinal 2 ~~ 

(again in the model). Then the graph (R, ff),  where ff is the set 

{<s,t>e ~ . ~ : t < s } ,  

is an RNC-graph which admits no free subgraphs of cardinality greater than N1. �9 

Given the continuum hypothesis, however, we can show these theorems are 

"best possible" and much more. We can construct a RBNCgraph over R admitting 

no uncountable free subgraphs. Moreover, for each r e R the set r is either empty 

or has order type co under <,  admits only r as a limit point, and is contained in 

the open interval ( r -  e,, r) where e, may be any specified positive real number 

and may vary for different r ~ R. This answers several questions raised by Erd/3s 

and Hajnal [2, p. 53; 4,pp. 188-189; 5, ~ 38A, p. 35]. That such a graph can be 

constructed follows immediately from: 
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THEOREM 3.7. Assume the continuum hypothesis and let ~ = ~T, (9) be any 

second-countable Hausdorff space of cardinality 2 ~~ Let ~i be the set of nowhere- 

dense subsets of T, let -< be any total ordering on T which admits no decreasing 

sequence { t ~ e T : e e N ~ }  such that c t< f l~ t~>- ta ,  and for each t ~ T  let 

{Btn: n ~co} be a nested base for the open neighborhoods of t. Then there exists 

an L[-graph ( T , ~ )  which admits no uncountable free subgraphs and for which 

t # ~ implies: 

a. s ~ t ~ s - < t ,  

b. t _8'o, 
c. (B t , -  Bt,+t) n t  has at most one element, 

d. t has cardinality N o, 

e. t is the unique limit point of every infinite subset o f t ,  

f. s # t ~ s n t  is finite. 

PROOF. Fo r  convenience we identify T with N 1. Let M =  {Bi: ieco} be a 

countable base for 8, and for  any set S ~ T ,  let S * = { s : s e O e O ~ 3 t - < s  

t e O n S}. We first note that  for any S __q T, the set S - S* is countable.  This 

follows f rom the fact that  to each s ~ S - S* we may assign a set B~ e:~ such that 

seB~ and B ~ n { t e S : t - < s } = ( g .  Since <~ is a total ordering, we have 

B~ -- B e ~ s = t; thus the countabili ty o f  M implies the countabil i ty o f  S - S*. 

N o w  let { C ~ : e e N l }  be an enumerat ion of  I T ]  <~', and for  each ~eN:~ let 

c~, = {Ca: fl < e e C ~ } .  I f  T~ = ~ ,  we set 0t = ~ .  Otherwise we let {C,~: n co)} 

be an enumeration,  with repeats if necessary, of  c~, and we define a = {~,: n e co} 

inductively. Assume we have defined e,, for each m < n. Choose any k such that  

{ % , ' " , % - 1 }  n B k  = r and let e, be any member  o f B  k ~C~, ~ { t :  t -<  a}. 

We see immediately that ~t satisfies a, b, e, and d, and, because ~J- is Hausdorff ,  

e, e n,,<,B~,, and {B~,} is a nested base; e and t h e r e f o r e f  also follow. 

To prove that  T admits no uncountable free subgraphs is a bit more  difficult. 

Let S be any uncountable  subset of  T. We shall prove that S is not  free. 

We first prove that for some e ~ Nx we have C~ _ S and S* = C* For  each 

B, e ~ ,  let D, be any countable subset of  B, n S such that a e (/3, n S) ~ 3d ~ D, 

( d < a ) .  Such a countable set D, always exists because ( T ,  < ; )  admits no un- 

countable decreasing chains. Thus U,~,oD, e I T ]  <m and is therefore equal to 

C, for  some e. N o w  choose any s ~= S* and any set O such that s e O e (9. Because 

is a base, we have s e B, _c O for  some n ~ co, and therefore we have an element 

t e S  r iB ,  such that  t ~ s .  This in turn implies the existence o f  an element 
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d e D, ___ B,, _c 0 such that d <( t -< s. Thus since O was arbitrary, we have s ~ C*, 

and since s was arbitrary, we have S* ~ C*. 

Finally, because S is uncountable while S - S* is countable, we may choose a 

point fl such that e < f le  S* n S. Since S* _. C~* we have fl ~ C* and  therefore 

C~ec~B. But from our construction this yields ~ - ~  II n C~ ~ p A S ,  so S is 

indeed not free. However, S was an arbitrary uncountable subset of T,  so we are 

done. �9 

This theorem may be generalized to higher cardinals. Suppose we look at a 

Hausdorff  space J - =  ( T , 0 )  of cardinality ~:+ = 2~which admits a base N of  

cardinality K. The order -< will now have to admit no decreasing sequence of 

order type K +, and one other property of J -  will be required. When constructing 

c%, we assumed that there existed a k such that B; n {ar ( <  n} = ~ .  For  n 

finite this followed from the fact that J -  was Hausdorff, but by 2.1 we see that we 

cannot hope to require each t to be countable. Instead we require that each t be 

either empty or of cardinality ~:. Thus we must assume (and therefore require) that 

each t e T (with at most ~: exceptions) admit, as an open base for its neighborhoods, 

a nested family ~ t =  {B~: ~ ~ K} satisfying S ~ [ T -  {t}]<~ ~ ~B ~Mt(B n S = ~ ) .  

Given these conditions we can construct a l i -graph which admits no free 

subgraphs of cardinality ~:+ and for which t ~ ~ implies a, b, and c of 3.7 and 

d ~. t has cardinality x, 

e ~. t is the unique limit point of every subset of t of cardinality x, 

ft. s g: t ~ s n t has cardinality less than ~. 

This has an interesting application. In [3] Erd6s and Fodor  ask the following: 

Let ~ be any cardinal and let G be a [~c]<~-graph over K such that for some cardinality 

~. < K each pair ct, fl of distinct ordinals in K satisfies [0t C~ [i[ < ), Does there then 

exist a free subgraph of cardinality ~? (They prove that there always exists an 

infinite free subgraph.) Hajnal has proven [7] that the answer is negative when- 

ever K is regular and 2~= K +. We note that the generalization of 3.7 yields an 

alternate proof  of a special case of this. 

3.8. THEOREM. Let  ~c be any  regular  cardinal  such that  2 ~ = tc + and 2 ~ = ~. 

Then  there exists  a [~c+]>-~-graph on ~+ such that  c~ < fl < r c ~  [at n ~[ < tr 

but which contains no f r ee  subgraphs  o f  card ina l i t y  ~c +. 
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PROOF. We need only exhibit a topological space of cardinality ~c + having 

the required properties and apply our generalization. Such a space can be obtained 

by generalizing the notion of the real line. Let F,  be the set of functions from ~c 

into {0, 1}, let R~ be the set {f~F~: a E• ~ 3fl[a < fl < tc Af(fl)  ~ f ( a ) ] } ,  let ~ 

be the lexicographical ordering of R~, and let ~?~ be the order topology on R~ 

induced by <~. It  is easily seen that the set of open intervals whose endpoints are 

in F~ - R~ forms a base of  cardinality/c (because 2 ~ =/c) for (9~. Also, because/~ 

is regular, the intersection of any nested sequence of fewer than/r open intervals 

is itself an open interval. �9 

We may generalize 3.7 in another direction by allowing the continuum hy- 

pothesis to fail, but requiring instead that Martin 's  axiom hold. The result we 

obtain while not exact, is still interesting in the light of 4.8-4.10. 

THEOREM 3.9. Assume Martin's axiom. Let J - =  (T ,  C}, lI, and -r satisfy the 

hypotheses of 3.7, and for each t ~ T let B t be any open set containing t. Then 

there exists an ).l-graph which admits no free subgraphs of cardinality 

2 ~~ and which satisfies: 

a. s 6 t ~ s ~( t, and 

b. t c_B  t. 

PROOF. We proceed exactly as in the proof  of  3.7 with the same definitions, 

except for that of 0t. By 2.1 we cannot let some countable set equal at and still 

expect to obtain a graph with no free subgraphs of cardinality 2 G So we shall use 

a different construction based on Martin 's  axiom. The reader not familiar with 

this axiom should consult [10]. 

Choose any fixed a c T .  I f  a t ( T - T * )  let 0 t = ~ ;  otherwise let ~ ,  

= { B e ~ : 3 D ~ ( ~ [ ~ D c _ ( T - B ) ] } ,  let T ~ = { t . < ~ : t e T n B ~ } ,  and let P 

= [ ~ ' , ] < ~  x [T, ]  <~~ For  each p = (a ,  b} ~ P, let Po = a and Pl = b. We wish to 

think of tdpo as that part  of 7' which is removed so that the remainder will be 

nowhere dense, and p~ as a subset (to be) of ~t. Thus we consider only the set 

W = {p E P:  p~ n Upo = ~ } .  Let ~ be the partial-order structure (W, ~(} defined 

by p ~ , q  ~ p o ~ q o A  p~ c_ q~. We note that for any two elements p,q ~W,  if 

Po = qo, then the pair r = (Po, Pat.; q~} belongs to pc and extends both of them, 

so ~ satisfies the countable chain condition. For  each B c ~  let 

FB = {p~pc: 3B' E po[B' c_ B]}, 
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and for each fl such that C B ~ff ,  let Fp = {p EPC: P l n  Cp r ~ } .  It is easily seen 

that each FB and each Fp is dense open. So by Martin's axiom, there exists a 

filter G over ~ which is ({F~: B eS~} U {Fa: C a ~ c~,})-generic (i.e. G _ No, 

p, q ~ G ~ 3r ~ G(p ~( r A q ~( r), B E ~ ~ F B ~ G ~ ~,andCB~C~--*FB f ~ G r  ~ ) .  

Thus if we set 0t = ~3 {p~ : p ~ G}, we see immediately that 0t satisfies a and b 

of the theorem, is nowhere dense, and intersects each C a ~ .  The remainder of 

the theorem now follows exactly as before. �9 

4. Free families 

We conclude by considering the existence of N-free families of subsets of R 

where (R, fr is a ~In-graph. Since we can always find an infinite free set and 

partition it into infinitely many disjoint infinite pieces which will, of  course, be 

N-disjoint, we will only be interested in families which are either themselves 

uncountable or have uncountable members. The former will not, in general, be 

possible because if we had such a family, then by choosing one representative 

from each member we could obtain an uncountable free set thus violating 3.7., 

at least if the continuum hypothesis holds. Thus in the general case, we are 

reduced to looking for free families some of whose members are uncountable. 

Ideally, we would like to find such families each of whose members has cardinality 

2 e~ but our proofs instead lead to families each of whose members is of the second 

category. Given C or therefore, the continuum hypothesis or Martin's axiom, we 

can immediately infer that these members actually do have cardinality 2~~ 

otherwise we do not know. 

There is a related question which we shall consider first. Suppose we are given 

a family ~ = {E~: i~ I} of "reasonable" disjoint sets. Can we find a free family 

~- = (F i _~ El: i ~ I} of " la rge"  sets? For  r finite, the answer will be yes; for o ~ 

infinite, we do not have complete information, even for "smal l"  sets. 

An obvious family to consider is the family ~ = { [ z , z  + 1): z ~Z}. We do not 

know whether there always exists a free family ~- = {Fz ~- [z, z + 1): z ~ Z} of 

nonempty (or infinite) sets, but we can prove independence results if we require 

that at least one of the F. be uncountable. In fact if we assume the continuum 

hypothesis, we can look at a much larger class of graphs. We define a set S ___ R 

to be s trongly  discrete iff for any two distinct points r, s ~ S, we have [ r - s] > 1, 

and we let 1I ~ be the family of all strongly discrete subsets of R. Then we have: 

THEOgEM 4.1. I f  the con t inuum hypothesis  holds, there exists a Ui~ 
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( R , ~ )  such that for any uncountable set U ~_ R, the set R - U{u: u ~ U} is 

bounded. 

PROOF. Let {r=: a~N1} be an enumeration of R and let {C=: a~N,} be an 

enumeration of the unbounded countable subsets of R. Then for each a e Nx we 

may, because the C~ are unbounded, choose a strongly discrete subset of R which 

does not contain r, and which has nonempty intersection with each C a such that 

fl < a. Call this set r~, and the resulting graph fr 

Now let U be any subset of R such that the set C = R - u { u :  u ~ U} is un- 

bounded. Then for some a ~ N~ we must have C, __c_ C, so U must be a subset of 

{rB: fl < c~} and thus countable. [ ]  

As with 3.7, we may substitute Martin's axiom for the continuum hypothesis in 

both the statement and the proof  of this theorem. As before, we use the axiom to 

obtain the set r,  which intersects each C~ such that fl < e (even when e is un- 

countable). Again the set r,  will be nowhere dense (we may use essentially the 

same construction as in 3.9), but will not have the additional properties which 

can be obtained given the continuum hypothesis. Thus we have: 

COROLLARY 4.2. I f  Martin's axiom holds, there exists a ~.IN-graph (R, ~ )  such 

that for any set U ~_ R of cardinality 2 ~~ the set R - U{u: u ~ U} is bounded. [] 

Applying this to .~ we have: 

COROLLARY 4.3. I f  Martin's axiom (the continuum hypothesis) holds, then 

there exists a ~,I z~- (~D_) graph such that no infinite free family 

~ = { F ~ _ [ z , z +  1): z~Z}  

contains a member of cardinality 2 ~~ []  

On the other hand, not only is it consistent that there always exist such free 

families ~ each of whose members have cardinality 2 ~, but it is consistent to 

assume in addition that u ~  be free. In fact we have the even stronger result: 

THEOREM 4.4. It is consistent with ZFC that every ~.IU-graph admit a free 

set F such that for every non-empty open interval (a, b), the set F t~(a, b) is of 

the second category and has cardinality 2 ~~ 

PROOF. It is known that the set G mentioned in the proof  of  3.3 can be con- 

structed to have the additional property that ] G (~ (a, b)] -- 2 ~~ for every non- 

empty interval (a, b). The theorem then follows by applying 2.5 instead of 2.1 and 

letting ~ = {G n (p, q): p, q rational}. [ ]  
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I f  o ~ is finite the situation is quite different. As our proofs will follow in spaces 

other than R with little or no extra difficulty, we shall consider the general case 

and begin with a slight generalization of the notion of category. 

I f  3-  = ( T ,  0 )  is any topological space, then the weight of J "  (which we shall 

denote by wt(J-)) is defined to be the least cardinal ;t such that 0 admits a base of  

cardinality 2. Using this, we define a set S _ T to be of thefirst *category iffit  is 

a union of at most wt(9-') nowhere-dense subsets of T and to be of  the second 

*category otherwise. We shall refer to sets of the first or second *category as 

f-sets or s-sets respectively. Finally, we define a set S _ T to be categorically 

dense over an open set O iff for every open set P _ O, the set S n P is an s-set. 

We note that if a set S is categorically dense over an open set O and P is any open 

subset of O, then S is categorically dense over P. 

The reason we choose this definition of second *category is so that we might 

have: 

LEMMA 4.5. I f  J -  = (T,r  is any topological space and S ~ T is any s-set, 

then there exists a set 0 E (9 over which S is categorically dense. 

PROOF. LetM be a base for d~ of cardinality x = wt(3-), let ~ = (B ~:~: B n S 

is an f-set}, and let A = T - U ~ .  Since S n ( u ~ )  is a union of at most x J'-sets, 

it is itself an f-set, so A n S, and therefore A, must be an s-set. Thus, in particular, 

A cannot be nowhere dense. But since A is closed, it must have non-empty in- 

terior I,  and it is easily seen that S is categorically dense over I.  �9 

We shall also need: 

LE~MA 4.6. I f  Ao and A1 are any two disjoint s-sets in a Hausdorff space, 

then there exist disjoint open sets Oo and 01 such that each A s (and therefore 

Ai n Oi) is categorically dense over 0 i. 

PRoof. By 4.5 we may choose open sets O~ and Of such that each Ai O O'~ is 

categorically dense over 0;. Choose any points Po and p~ such that p~eA, n Ot 

and choose any pair 0o, 01 of disjoint open sets such that piEOi ~ 0~. �9 

And similarly: 

LEMMA 4.7. I f  A is any s-set in a Hausdorff space such that no member of A 

is an isolated point, then A may be split into two disjoint s-sets. 

PROOF. By 4.5 there exists an open set O over which A is categorically dense. 

Because A has no isolated points, we may choose two points Po, P l e  A n O and, 
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because we are in a Hausdorff  space, two disjoint open sets Oo, O 1 _~ O, such that 

Pie Oi - O. Clearly A n Oo and A - (A n O0) are the two desired sets. [] 

We next consider finite families d ~ of " reasonable"  disjoint sets. F rom the 

following theorems we see that the proper definition of reasonable should be 

"s-set" .  We begin with a theorem which, although not stated in quite this form, 

is essentially due to Marcus [9]. 

THEOREM 4.8. Let ~-- = (T ,  d)) be any Hausdorff space, let Ui be the family  

of nowhere-dense subsets of T, and let ~ = {Ei: i < n} be any finite family of 

disjoint s-sets. Then every ~-graph admits a free family  {F i ~_ Ei: i < n} of 

s-sets. 

PROOF. I t  is sufficient to prove the theorem for n - - 2 ;  the remainder will 

follow by induction. So suppose ~Y = (Eo, El}. By 4.6 we may assume that there 

exist disjoint open sets O o and 01 such that each E~ is categorically dense over O,. 

Let ~ be a base for d~ of cardinality wt ( f ) .  Because ( T , ~ )  is an K-graph, we may 

assign to each a e E o a non-empty set P~ ~ ~ such that Pa ~ O1 and a t~ P~ = ~ .  

For  each P E ~  let B p = { a ~ E o : P a = P } ,  and let M = { B e : P ~  }. Since 

= wt(J), w e  have JMJ < wt(J'). But E o = u ~  and E o is an s-set, so there 

must be at least one set Q ~ ~ such that BQ is an s-set. 

Now, using 4.5, we choose a non-empty open set O o _~ Oo over which B o is 

categorically dense, and we set E~ = BQ n O~, E~ = E 1 n Q, and 0 '  1 -- Q. We note 

that as before, each E~ is categorically dense over O~, and Oo n O'~ = ~ .  However, 

we also have (E o x E~) n ~ = ~ .  Thus if we repeat our construction choosing 

a ~ E~ and P~, _~ Oo, the resulting s-sets E o and E~' will be f~-disjoint. [ ]  

We return to our original question, that of  the existence of infinite free families. 

As we have seen, we cannot hope to choose in advance the locations of the members 

of  such families, but this does not mean such families do not exist. Not  only do 

they exist, but we will even be able to specify the locations of  their unions subject 

only to the conditions that these locations be s-sets and that they contain either 

infinitely many or no isolated points. This latter is necessary because, otherwise, 

the desired location might turn out to be the union of an f-set with a finite set of 

isolated points and, therefore, not contain any infinite family of disjoint s-sets. 

THEOREM 4.9. Let J-, }~, and fY be as in 4.8, and let A c T be any s-set which 

contains either infinitely many isolated points or no isolated points. Then there 

exists a family ~ = {Fi: i~og) of mutually ~-disjoint s-subsets of A. 
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PROOF. If  A contains an infinite set {ai:i6co } of isolated points, let 

-- {{a~}: i ~ co}. Otherwise we construct F i inductively as follows. Assume we 

have already constructed a family Fo, F1, . . . ,F ,_t ,A,  of mutually if-disjoint 

infinite s-subsets of A. Then by 4.7, we may split A, into two infinite s-sets 

B~ and B~ and then apply 4.8 to obtain two infinite if-disjoint s-sets F,  _ B~ and 

A,+I __ B~. The family o~ = {F~: iE~o} now satisfies the theorem. �9 

If  we look only at R, this result may be sharpened considerably. For  any two 

sets A, B c_ R, define A < B to hold iff for every a e A and b ~ B, we have a < b. 

Then we have: 

THEOREM 4.10. Let (R,f#> be any llN-graph over R and let A ~_ R be any 

s-set. Then there exists a family o~ = {F,: n Eco} of mutually if-disjoint s-sets 

such that t_) o~ ~_ A and (o~, <)  is a dense total-order structure with no first or 

last element. 

PROOF. We first note that if S is any s-set in R, then by applying twice the 

method used in proving 4.7 and then using 4.8, we can obtain three mutually 

if-disjoint s-sets So, $1, S: c_ S such that S O < St < $2. 

We first apply this on A to obtain three such mutually disjoint s-sets Ao < A1 

< Az. We then repeat this process with respect to Ao and A2 obtaining s-sets 

A 3 < A 4 < A s and A6 < A7 < As, but we leave AI fixed. This process is con- 

tinued for all n always keeping sets of index 3i + 1 fixed, and always partitioning 

each of the others into three subsets having the appropriate properties. We may 

now let o~- = {A3~+ i : i e co}. �9 

We now have the machinery available to prove the theorem mentioned just 

before 3.7, i.e. to prove that every ~[N-graph over R admits free sets of every 

countable order type. We note that it is sufficient to prove that every such graph 

admits a free set of order type r/, the order type of the rationals, because it is 

known that every countable order type can be embedded into r/. But this we have 

already done; simply choose one point from each F,  belonging to the family o~ 

constructed in 4.10. Thus we have shown: 

COROLLARY 4.11. If <R, i f)  is any !IN-graph, S is any s-set in R, and y is any 

countable order type, then there exists a free-set G ~_ S which has order type 

under <. �9 

We wish to thank Professor Erd6s for suggesting this last question to us. 
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5. Open problems 

We collect here some problems which we have ment ioned earlier. 

1. Does the existence o f  an ~NC-or ~N-graph which admits no uncountable  

free sets imply the cont inuum hypothesis? 

2. Does Mar t in ' s  axiom imply that  every ~ g r a p h  admits free sets o f  every 

cardinality less than 2~~ 

3. Does every KN-graph admit  a dense or  even non-nowhere  dense, free set? 

4. Does every ~N-graph admit  a free family {F z : z E Z) such that  each Fz is a 

non-empty  (infinite) subset of  [z, z + l J? 

5. Does every ~N-graph (R,  i f )  admit  two (infinitely many)  if-disjoint sets each 

of  cardinality 2~~ 
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